The QCD critical line at finite chemical potentials

Francesco Negro

17 July 2014

Lausanne

Strong and ElectroWeak Matter

Based on an ongoing study in collaboration with: C. Bonati, M. D'Elia, M. Mariti, M. Mesiti, F. Sanfilippo.

- The QCD phase diagram in the $T \mu$ plane \bullet
- The analytic continuation method \bullet
- Lattice QCD and Observables \bullet
- Preliminary results \bullet
- Conclusions and outlook \bullet

The QCD phase diagram in the $T - \mu$ plane

A minimal version of the phase diagram: mostly based on conjectures.

Baryon Chemical potential

Lattice QCD approach

 \rightarrow NP technique to study strong interactions from first principles. Sign Problem at nonzero baryon chemical potential!

The QCD phase diagram in the $T - \mu$ plane

The HIC experiments are investigating the existence of the high-T QGP phase and of the critical endpoint.

The freeze-out curve can be determined from experimental data [Cleymans et al., '06; Beccattini et al., '13].

What we can do is to try to estimate the pseudo-critical line and compare the two.

In a collision event we expect $\mu_{\mu} = \mu_d \neq 0$ and $\mu_s = 0$, because the net strangeness of the initial state is zero.

The analytic continuation method

At lowest order in $\mu^{\mathcal{B}}$, we can parameterize the critical line as

$$
\frac{T_{\rho c}(\mu^B)}{T_{\rho c}(\mu^B = 0)} = 1 - \kappa \left(\frac{\mu^B}{T_{\rho c}}\right)^2
$$

Anyhow, the *sign problem* hinders direct lattice QCD simulations at

$$
\mu^B\neq 0.
$$

We avoid it by assuming the theory to be analytical in $\mu^{\mathcal{B}}$ and studying the phase diagram in the $T - \mu_I^B$ plane. Hence, we consider the theory in the presence of an imaginary quark chemical potential $\mu_B = i\mu_I^B$.

$$
\frac{T_{pc}(\mu_l^B)}{T_{pc}(\mu_l^B=0)} = 1 + \kappa' \left(\frac{\mu_l^B}{T_{pc}}\right)^2
$$

Assuming analyticity means assuming $\kappa = \kappa'$

Observables

In order to characterize and identify the confined and the deconfined phases of QCD, we compute 2 different observables:

- $\bullet \hspace{0.1cm} \langle \psi\psi \rangle_{\mathsf{r}}$, Renormalized Chiral Condensate
- $\Delta_r \chi_{\overline{\psi}_2}$, Renormalized Chiral Condensate Susceptibility

They are associated to the partial restoration of chiral symmetry above T_{pc} .

We identify T_{pc} respectively as:

- The inflection point of $\langle \overline{\psi}\psi \rangle_r$
- The peak of $\Delta_r \chi_{\overline{u}_2u}$

The transition is known to be a broad cross-over; hence different observable may lead to different transition temperatures.

Observables: details 1/2

We consider $N_f = 2 + 1$ QCD at the physical point:

$$
\mathcal{Z} = \exp(-f/T) = \int \mathcal{D}U \exp(-S_{YM}[U]) (\det(M_u) \det(M_d) \det(M_s))^{1/4}
$$

The chiral condensate is defined as:

$$
\langle \overline{\psi}_f \psi_f \rangle = \frac{1}{V_4} \frac{\partial \log \mathcal{Z}}{\partial m_f} = \frac{N_f}{4V_4} \langle Tr(M_f^{-1}) \rangle.
$$

It can be properly renormalized by removing additive and multiplicative divergencies [M. Cheng et al., PRD '08]:

$$
\langle \overline{\psi}\psi\rangle_{r}=\frac{\langle \overline{\ell}\ell\rangle(\mathcal{T})-\frac{2m_{ud}}{m_{s}}\langle \overline{s}s\rangle(\mathcal{T})}{\langle \overline{\ell}\ell\rangle(0)-\frac{2m_{ud}}{m_{s}}\langle \overline{s}s\rangle(0)}
$$

Observables: details 2/2

The susceptibility of the chiral condensate reads:

$$
\chi_{\overline{\psi}\psi} = \frac{1}{V_4} \frac{\partial^2 \log \mathcal{Z}}{\partial m_f^2} = \frac{1}{V_4} \left(\frac{N_f}{4}\right)^2 \left[\langle Tr(M_f^{-1})^2 \rangle - \langle Tr(M_f^{-1}) \rangle^2 \right] + \frac{N_f}{4V_4} \langle Tr(M_f^{-2}) \rangle
$$

It can be properly renormalized by defining [Y. Aoki et al, JHEP '06]:

$$
\Delta_r \chi_{\overline{\psi}\psi} = m_{ud}^2 \left(\chi_{\overline{\psi}\psi}(\mathcal{T}) - \chi_{\overline{\psi}\psi}(0) \right)
$$

Numerical Setup

We adopt a state-of-art discretization of $N_f = 2 + 1$ QCD:

- **•** Fermionic Sector: stout smearing improved staggered fermions.
- **Gauge Sector: tree level improved Symanzik action.**
- Bare Parameters: chosen according to [Aoki et al., '09]; we are on a line of constant physics at the physical point.

For the observable we use stochastic estimators, with 8 random vectors per flavour.

We are running simulations on the BG/Q machine at CINECA (Italy).

Simulations on 4 lattices: 24 3 x6 and 32 3 x8 for $\mathcal{T} \neq 0$ and 24 4 and 32 4 for $\mathcal{T}=0.$

For each lattice we performed simulations at several chemical potentials, exploring a range of temperatures close to the transition. We explore both the ($\mu_{ud} \neq 0$; $\mu_s = 0$) and the ($\mu_{ud} = \mu_s \neq 0$) cases.

Preliminary Results: $T_{pc}(\mu_l)$ from $\langle \psi \psi \rangle_r$

Lattice: $24^3 \times 6$

We fit the renormalized chiral condensate with

$$
\langle \overline{\psi}\psi\rangle_r = a\cdot \mathrm{atan}(b\cdot(T-T_{pc})) + c
$$

F. Negro SEWM 2014 10 / 18

Preliminary Results: $T_{pc}(\mu_l)$ from $\Delta_r \chi_{\psi\psi}$

Lattice: $24^3 \times 6$

We fit the peaks of the renormalized chiral susceptibility with $\Delta_r \chi_{\overline{\psi}\psi} =$ a \cdot $({\cal T} - {\cal T}_{\sf pc})^2 + b$

Preliminary Results: $T_{pc}(\mu_l)$ from both the observables

Lattice: $32³ \times 8$

We fit data according to the previous functions. We are going to finer lattices (at fixed physical volume) in order to approach the continuum limit.

Critical Lines on $24^3 \times 6$

We perform a linear fit in μ^2 to extract the critical line curvature.

From the chiral condensate we get: $\kappa = 0.0148(7)$ From the susceptibility we get: $\kappa = 0.0149(8)$

F. Negro SEWM 2014 13 / 18

Critical Lines on $32^3 \times 8$

From the chiral condensate we get: $\kappa = 0.0144(10)$ From the susceptibility we get: $\kappa = 0.0152(12)$

The case at nonzero strange chemical potential

We want to understand what is the influence of μ_s on the curvature of the critical line.

Hence, we consider now the setup with $\mu_{ud} = \mu_s \neq 0$.

The strange quark chemical potential contribute substantially to the displacement of $T_{\textit{pc}}$.

The case at nonzero strange chemical potential

Both curves are obtained from the chiral condensate.

From the $\mu_s = 0$ we get: $\kappa = 0.0144(10)$ From the $\mu_s = \mu_{ud}$ we get: $\kappa = 0.0190(12)$ The ratio is $\simeq 1.32 \implies$ Enhancement of κ due to μ_s !

Comparisons

- Black points: LQCD, Analytic cont.
- Red points: LQCD, Taylor exp.
- Blue points: Freeze-out data
- 1. This work, condensate.
- 2. This work, susceptibility.
- 3. [Cea et al, '14] HISQ action, $\mu_s = \mu_{ud}$, susceptibility.
- 4. [Kaczmarek et al, '10] P4 action, condensate.
- 5&6. [Endrodi et al, '10] STOUT action, strange quark numb. susceptibility & condensate.
	- 7. [Cleymans et al, '06] Chemical Freeze-out.
	- 8. [Beccattini et al, '06] Chemical Freeze-out.
- Computation of two observables sensitive to the transition.
- Determination of the critical line curvature at 2 lattice spacings.
- Our result for κ is larger than previous Taylor expansion-based determinations (but we still need the continuum limit).
- We got a larger curvature in the case $\mu_s = \mu_{ud}$.

Future perspectives:

- Compare with further observables.
- Perform simulations at $N_t = 10$ to perform the continuum limit.