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The QCD phase diagram in the T − µ plane

A minimal version of the phase diagram: mostly based on conjectures.
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Lattice QCD approach
−→ NP technique to study strong interactions from first principles.

Sign Problem at nonzero baryon chemical potential!
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The QCD phase diagram in the T − µ plane

The HIC experiments are investigating the existence of the high-T QGP
phase and of the critical endpoint.

The freeze-out curve can be de-
termined from experimental data
[Cleymans et al., ’06; Beccattini et
al., ’13].

What we can do is to try to estimate
the pseudo-critical line and compare
the two.

In a collision event we expect
µu = µd 6= 0 and µs = 0, because
the net strangeness of the initial
state is zero.
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The analytic continuation method

At lowest order in µB , we can parameterize the critical line as

Tpc(µB)

Tpc(µB = 0)
= 1− κ

(
µB

Tpc

)2

Anyhow, the sign problem hinders direct lattice QCD simulations at

µB 6= 0.

We avoid it by assuming the theory to be analytical in µB and studying the
phase diagram in the T − µB

I plane.
Hence, we consider the theory in the presence of an imaginary quark
chemical potential µB = iµB

I .

Tpc(µB
I )

Tpc(µB
I = 0)

= 1 + κ′
(
µB

I
Tpc

)2

Assuming analyticity means assuming κ = κ′
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Observables

In order to characterize and identify the confined and the deconfined
phases of QCD, we compute 2 different observables:

• 〈ψψ〉r , Renormalized Chiral Condensate
• ∆rχψψ, Renormalized Chiral Condensate Susceptibility

They are associated to the partial restoration of chiral symmetry above Tpc .

We identify Tpc respectively as:
• The inflection point of 〈ψψ〉r
• The peak of ∆rχψψ

The transition is known to be a broad cross-over; hence different
observable may lead to different transition temperatures.
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Observables: details 1/2

We consider Nf = 2 + 1 QCD at the physical point:

Z = exp(−f /T ) =

∫
DU exp(−SYM [U]) (det(Mu) det(Md ) det(Ms))1/4

The chiral condensate is defined as:

〈ψf ψf 〉 =
1
V4

∂ logZ
∂mf

=
Nf

4V4

〈
Tr(M−1

f )
〉
.

It can be properly renormalized by removing additive and multiplicative
divergencies [M. Cheng et al., PRD ’08]:

〈ψψ〉r =
〈``〉(T )− 2mud

ms
〈ss〉(T )

〈``〉(0)− 2mud
ms
〈ss〉(0)
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Observables: details 2/2

The susceptibility of the chiral condensate reads:

χψψ =
1
V4

∂2 logZ
∂m2

f
=

1
V4

(
Nf

4

)2 [〈
Tr(M−1

f )2〉− 〈Tr(M−1
f )
〉2]

+

+
Nf

4V4

〈
Tr(M−2

f )
〉

It can be properly renormalized by defining [Y. Aoki et al, JHEP ’06]:

∆rχψψ = m2
ud

(
χψψ(T )− χψψ(0)

)

F. Negro SEWM 2014 8 / 18



Numerical Setup

We adopt a state-of-art discretization of Nf = 2 + 1 QCD:
Fermionic Sector: stout smearing improved staggered fermions.
Gauge Sector: tree level improved Symanzik action.
Bare Parameters: chosen according to [Aoki et al., ’09]; we are on a
line of constant physics at the physical point.

For the observable we use stochastic estimators, with 8 random vectors per
flavour.

We are running simulations on the BG/Q machine at CINECA (Italy).

Simulations on 4 lattices:
243x6 and 323x8 for T 6= 0 and 244 and 324 for T = 0.

For each lattice we performed simulations at several chemical potentials,
exploring a range of temperatures close to the transition.
We explore both the (µud 6= 0; µs = 0) and the (µud = µs 6= 0) cases.
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Preliminary Results: Tpc(µI ) from 〈ψψ〉r
Lattice: 243x6
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We fit the renormalized chiral condensate with
〈ψψ〉r = a · atan(b · (T − Tpc)) + c
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Preliminary Results: Tpc(µI ) from ∆rχψψ

Lattice: 243x6
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We fit the peaks of the renormalized chiral susceptibility with
∆rχψψ = a · (T − Tpc)2 + b
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Preliminary Results: Tpc(µI ) from both the
observables

Lattice: 323x8
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We fit data according to the previous functions.
We are going to finer lattices (at fixed physical volume) in order to
approach the continuum limit.
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Critical Lines on 243x6

We perform a linear fit in µ2 to extract the critical line curvature.
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From the chiral condensate we get: κ = 0.0148(7)
From the susceptibility we get: κ = 0.0149(8)
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Critical Lines on 323x8
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From the chiral condensate we get: κ = 0.0144(10)
From the susceptibility we get: κ = 0.0152(12)

F. Negro SEWM 2014 14 / 18



The case at nonzero strange chemical potential

We want to understand what is the influence of µs on the curvature of the
critical line.
Hence, we consider now the setup with µud = µs 6= 0.

140 160 180 200

T [MeV]

0

0.2

0.4

0.6

0.8

<
ψ

ψ
>

r

µ
ud

 = µ
s
 = 0.000

µ
ud

 = µ
s
 = 0.200

µ
ud

 = µ
s
 = 0.240

µ
ud

 = µ
s
 = 0.275

140 160 180 200

T [MeV]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

∆
r
χ

ψ
ψ

µ
ud

 = µ
s
 = 0.000

µ
ud

 = µ
s
 = 0.200

µ
ud

 = µ
s
 = 0.240

µ
ud

 = µ
s
 = 0.275

The strange quark chemical potential contribute substantially to the
displacement of Tpc .
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The case at nonzero strange chemical potential

Both curves are obtained from the chiral condensate.
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From the µs = 0 we get: κ = 0.0144(10)
From the µs = µud we get: κ = 0.0190(12)
The ratio is ' 1.32 =⇒ Enhancement of κ due to µs !
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Comparisons
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- Black points: LQCD, Analytic cont.
- Red points: LQCD, Taylor exp.
- Blue points: Freeze-out data

1. This work, condensate.

2. This work, susceptibility.

3. [Cea et al, ’14] HISQ
action, µs = µud ,
susceptibility.

4. [Kaczmarek et al, ’10] P4
action, condensate.

5&6. [Endrodi et al, ’10]
STOUT action, strange
quark numb.
susceptibility &
condensate.

7. [Cleymans et al, ’06]
Chemical Freeze-out.

8. [Beccattini et al, ’06]
Chemical Freeze-out.
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Conclusions and outlook

Computation of two observables sensitive to the transition.
Determination of the critical line curvature at 2 lattice spacings.
Our result for κ is larger than previous Taylor expansion-based
determinations (but we still need the continuum limit).
We got a larger curvature in the case µs = µud .

Future perspectives:
Compare with further observables.
Perform simulations at Nt = 10 to perform the continuum limit.
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