No admittance under 4:

Four-fermion condensation in strongly interacting dense matter

M. Alford, K. Schwenzer and A. Windisch

Der Wissenschaftsfonds.

ΞШF

sew

14

Symposium Latsis EPFL (14-18 July 2014) on Strong and Electroweak Matter (SEWM14)

Two species

Contexts

- ultracold atom systems
- ➤ solids
- ➤ quark matter
- neutron stars

Different Fermi momenta

- first constituent costs zero energy
- **≻ p**,−p
- ➤ ⇒ second constituent costs free energy
- might not be compensated

Andreas Windisch, [KFU, WashU]

4-fermion condensation in asymmetric systems

= = = = AQQ

QCD phase diagram

Contexts

- ultracold atom systems
- > solids
- quark matter
- neutron stars

Different Fermi momenta

- first constituent costs zero energy
- **> p**,−p
- ➤ ⇒ second constituent costs free energy

might not be compensated

Andreas Windisch, [KFU, WashU]

4-fermion condensation in asymmetric systems

= = = AQQ

Abandoning homogeneity...

Inhomogeneous chiral condensation

Review by M. Buballa and S. Carignano, "Inhomogeneous chiral condensates", arXiv:1406.1367

Inhomogeneous diquark condensation Available on the market:

LOFF-condensation

➤ DFS-phase

Andreas Windisch, [KFU, WashU]

A. Larkin and Y. Ovchinnikov, Zh. Eksp. Teor. Fiz 47, 1136 (1964)

Translation: [Sov. Phys. JETP 20, 762 (1965)]

P. Fulde and R. Ferrell, Phys. Rev. 135, A550 (1964)

Andreas Windisch, [KFU, WashU]

- translational and rotational not invariant
- condensate varies as plane wave with 2q
- > crystalline structure, $\Delta(r) = \cos(2\mathbf{q} \cdot \mathbf{r})$

LOFF in QCD

<u>A</u> 0.04 GeV 0.03 0.02

0.01

M. Alford, J. Bowers and K.

Rajagopal, Phys.Rev. D63 (2001)

crystalline condensate

 $\delta u_{s}/\Delta_{c}$

BCS (Δ_0)

0.4

 $LOFF(\Delta_{\Lambda})$

 $\delta \mu / \Delta_0$

0.6

0.8

- net momentum
- > QM and glitches: vortex pinning

Deformed Fermi Surface – Phase

Andreas Windisch, [KFU, WashU]

0th and 2nd polynomial $\mu_f = \mu_{f,0} + \mu_{f,2} \frac{1}{2} (3\cos^2 9 - 1)$ **Definition** $\bar{\mu}$ $\bar{\mu} = \mu_{f,0} - \frac{1}{2}\mu_{f,2}$ **Definition** $\varepsilon_{S/A}$ $\boldsymbol{\varepsilon}_{S/A} = \frac{3}{4} \left(\frac{\mu_{2,d}}{\bar{\mu}_d} \pm \frac{\mu_{2,u}}{\bar{\mu}_u} \right)$ Actual deformation

$$\mu_f = \bar{\mu}_f (1 \pm \varepsilon_A \sin^2 \vartheta)$$

DOC E LE LE

Andreas Windisch, [KFU, WashU]

H. Müther and A. Sedrakian, PRL 88 (2002) Superconducting vs. Normal State

Andreas Windisch, [KFU, WashU]

H. Müther and A. Sedrakian, PRC 67 (2003) Superconducting vs. Normal State (LOFF included)

Andreas Windisch, [KFU, WashU]

H. Müther and A. Sedrakian, PRC 67 (2003) Superconducting vs. Normal State (LOFF included)

Andreas Windisch, [KFU, WashU]

WHY QUARTETTING?

Kinematically suppressed

 $\langle qq \rangle = 0$

Quartetting

Condensation?

 $\langle qqqq \rangle = ?$

DOG E E TE

Ménage à quatre

Andreas Windisch, [KFU, WashU]

Scaling behavior $\lim_{s\to 0}$ weak coupling, $\delta \mu \ll \Delta$ $> \langle qq \rangle$: marginal \succ (qqqq) : irrelevant weak coupling, $\delta \mu \gtrsim \Delta$ $> \langle qq \rangle$: irrelevant \succ (qqqq) : irrelevant strong coupling, $\delta \mu \gtrsim \Delta$ $> \langle qq \rangle$: suppressed $> \langle qqqq \rangle$: ?

Andreas Windisch, [KFU, WashU]

4-fermion condensation in asymmetric systems

$$\begin{split} \mathscr{L} &= \\ \bar{\psi}^{\alpha}_{A} \left(\delta \mu - (\mu + \delta \mu \sigma_{3}) \gamma^{4} + m \right)^{\alpha \beta}_{AB} \psi^{\beta}_{B} + \frac{1}{2} \left(|\partial_{\mu} \Xi| \right)^{2} + \frac{1}{2} \left(|\partial_{\mu} \Theta| \right)^{2} \\ &+ \frac{m_{\Theta}^{2}}{2} \Theta^{\alpha \beta}_{AB} \varepsilon_{ijkl} c^{i}_{\alpha A} c^{j}_{\beta B} c^{k}_{\gamma C} c^{j}_{\delta D} \Theta^{\gamma \delta}_{CD} \\ &+ \frac{g^{\gamma}_{\Theta}}{2} \sqrt{\Xi^{*}} \varepsilon_{ijkl} c^{i}_{\alpha A} c^{j}_{\beta B} c^{k}_{\gamma C} c^{j}_{\delta D} \Theta^{\alpha \beta}_{AB} \psi^{\gamma}_{C} \psi^{\delta}_{D} \\ &+ \frac{g^{\gamma}_{\Theta}}{2} \sqrt{\Xi} \varepsilon_{ijkl} c^{i}_{\alpha A} c^{j}_{\beta B} c^{k}_{\gamma C} c^{j}_{\delta D} \Theta^{\alpha \beta}_{AB} \psi^{\gamma}_{C} \psi^{\delta}_{D} \\ &+ U(|\Xi|) + g^{\alpha \beta}_{AB} |\Xi| \Theta^{\alpha \gamma}_{AC} \Theta^{\beta \gamma}_{BC} + m_{\Theta}^{2} \Theta^{\alpha \beta}_{AB} \Theta^{\alpha \beta}_{AB} \end{split}$$

Andreas Windisch, [KFU, WashU]

4-fermion condensation in asymmetric systems

$$\begin{aligned} \mathscr{L} &= \\ \bar{\psi}_{A}^{\alpha} \left(\mathscr{J}_{\mu} - (\mu + \delta \mu \sigma_{3}) \gamma^{4} + m \right)_{AB}^{\alpha\beta} \psi_{B}^{\beta} + \frac{1}{2} \left(\left| \partial_{\mu} \Xi \right| \right)^{2} + \frac{1}{2} \left(\left| \partial_{\mu} \Theta \right| \right)^{2} \\ &+ \frac{m_{\Theta}^{2}}{2} \Theta_{AB}^{\alpha\beta} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{CD}^{\gamma \delta} \\ &+ \frac{g_{\Theta}^{\gamma}}{2} \sqrt{\Xi^{*}} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{AB}^{\alpha\beta} \psi_{C}^{\gamma} \psi_{D}^{\delta} \\ &+ \frac{g_{\Theta}^{\gamma}}{2} \sqrt{\Xi} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{AB}^{\alpha\beta} \psi_{C}^{\gamma} \psi_{D}^{\delta} \\ &+ U(|\Xi|) + g_{AB}^{\alpha\beta} |\Xi| \Theta_{AC}^{\alpha\gamma} \Theta_{BC}^{\beta\gamma} + m_{\Theta}^{2} \Theta_{AB}^{\alpha\beta} \Theta_{AB}^{\alpha\beta} \end{aligned}$$

Flow equation

$$\frac{\partial}{\partial k}\Gamma_k = \frac{1}{2}\mathbf{Tr}\left\{\left[\Gamma_k^{(2)} + R_k\right]^{-1} \frac{\partial}{\partial k}R_k\right\}$$

Andreas Windisch, [KFU, WashU]

$$\begin{aligned} \mathscr{L} &= \\ \bar{\psi}_{A}^{\alpha} \left(\breve{\rho}_{\mu} - (\mu + \delta \mu \sigma_{3}) \gamma^{4} + m \right)_{AB}^{\alpha\beta} \psi_{B}^{\beta} + \frac{1}{2} \left(|\partial_{\mu} \Xi| \right)^{2} + \frac{1}{2} \left(|\partial_{\mu} \Theta| \right)^{2} \\ &+ \frac{m_{\Theta}^{2}}{2} \Theta_{AB}^{\alpha\beta} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{l} \Theta_{C D}^{\gamma \delta} \\ &+ \frac{g_{\Theta}^{\gamma}}{2} \sqrt{\Xi^{*}} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{l} \Theta_{AB}^{\alpha\beta} \psi_{C}^{\gamma} \psi_{D}^{\delta} \\ &+ \frac{g_{\Theta}^{\gamma}}{2} \sqrt{\Xi} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{AB}^{\alpha\beta} \overline{\psi}_{C}^{\gamma} \overline{\psi}_{D}^{\delta} \\ &+ U(|\Xi|) + g_{AB}^{\alpha\beta} |\Xi| \Theta_{AC}^{\alpha\gamma} \Theta_{BC}^{\beta\gamma} + m_{\Theta}^{2} \Theta_{AB}^{\alpha\beta} \Theta_{AB}^{\alpha\beta} \end{aligned}$$

Andreas Windisch, [KFU, WashU]

 $\Xi^* \\ \Theta_{AB}^{\alpha\beta}$

4-fermion condensation in asymmetric systems

 $\Theta_{AB}^{\alpha\beta}$

$$\mathcal{L} = \frac{\overline{\psi}_{A}^{\alpha} \left(\overline{\partial}_{\mu} - (\mu + \delta\mu\sigma_{3})\gamma^{4} + m\right)_{AB}^{\alpha\beta} \psi_{B}^{\beta} + \frac{1}{2} \left(|\partial_{\mu}\Xi|\right)^{2} + \frac{1}{2} \left(|\partial_{\mu}\Theta|\right)^{2}}{+ \frac{m_{\Theta}^{2}}{2} \Theta_{AB}^{\alpha\beta} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{CD}^{\gamma\delta}} + \frac{g_{\Theta}^{\gamma}}{2} \sqrt{\Xi^{*}} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{AB}^{\alpha\beta} \psi_{C}^{\gamma} \psi_{D}^{\delta}} + \frac{g_{\Theta}^{\gamma}}{2} \sqrt{\Xi} \varepsilon_{ijkl} c_{\alpha A}^{i} c_{\beta B}^{j} c_{\gamma C}^{k} c_{\delta D}^{j} \Theta_{AB}^{\alpha\beta} \overline{\psi}_{C}^{\gamma} \overline{\psi}_{D}^{\delta}} + U(|\Xi|) g_{AB}^{\alpha\beta}|\Xi|\Theta_{AC}^{\alpha\gamma} \Theta_{BC}^{\beta\gamma} + m_{\Theta}^{2} \Theta_{AB}^{\alpha\beta} \Theta_{AB}^{\alpha\beta}}$$
Fow equation for $U(\Xi)$

$$\partial_{k} U(\Xi) = \frac{1}{2} \operatorname{Tr} \left\{ \left(\Gamma_{k}^{\prime\prime} + R_{k} \right)^{-1} \partial_{k} R_{k} \right\}$$

The flow equation for the potential

$$\frac{dU(|\Xi|)}{dk} = \frac{k^4}{6\pi^2} \left(\sum_{i \in \{11, 22, 12\}} \frac{2}{E_{\Theta}^{(i)}} \left(\frac{1}{2} + n_B \left(E_{\Theta}^{(i)} \right) \right) + \frac{1}{E_{\Xi}} \left(\frac{1}{2} + n_B (E_{\Xi}) \right) \right)$$

$$E_{\Theta}^{(i)} \equiv \sqrt{k^2 + m_{\Theta}^2 + g_{\Xi\Theta}^{(i)} |\Xi|} \qquad E_{\Xi} \equiv \sqrt{k^2 + U_{\Xi\Xi}}$$

$$n_B(E) = \frac{1}{\exp\{\frac{E}{T}\} - 1}$$

at an an

大学の

Condensate, dependent on $g_{\Xi\Theta}$, $\Lambda = 1$ GeV, $\mu_1 = \mu_2$

Andreas Windisch, [KFU, WashU]

4-fermion condensation in asymmetric systems

=

Summary and Outlook

Summary

At strong coupling in fermionic systems with large asymmetry two fermion condensation is suppressed. Our toy model indicates, that in this scenario four fermion condensation can become a viable candidate.

T

Outlook I

➤ include flow of couplings g_{ΞΘ}

Outlook II

study more realistic condensates

Andreas Windisch, [KFU, WashU]

4-fermion condensation in asymmetric systems

E

